A Quantitative Method to Evaluate the Performance of Climate Models in Simulating Global Tropical Cyclones

Author:

Shen Yixuan,Sun Yuan,Zhong Zhong,Li Tim

Abstract

The capability to reproduce tropical cyclones (TCs) realistically is important for climate models. A recent study proposed a method for quantitative evaluation of climate model simulations of TC track characteristics in a specific basin, which can be used to rank multiple climate models based on their performance. As an extension of this method, we propose a more comprehensive method here to evaluate the capability of climate models in simulating multi-faceted characteristics of global TCs. Compared with the original method, the new method considers the capability of climate models in simulating not only TC tracks but also TC intensity and frequency. Moreover, the new method is applicable to the global domain. In this study, we apply this method to evaluate the performance of eight climate models that participated in phase 5 of the Coupled Model Intercomparison Project. It is found that, for the overall performance of global TC simulations, the CSIRO Mk3.6.0 model performs the best, followed by GFDL CM3, MPI-ESM-LR, and MRI-CGCM3 models. Moreover, the capability of each of these models in simulating global TCs differs substantially over different ocean basins.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3