Author:
Zhang Yuying,Hu Limin,Wu Yonghua,Dong Zhi,Yao Zhengquan,Gong Xun,Liu Yanguang,Ikehara Minoru,Shi Xuefa
Abstract
The carbon cycle on the Earth’s surface is linked to long-term variations in atmospheric CO2 as well as carbon sequestration in various pools. The burial of particulate organic carbon (OC) in marine sediments is also highly sensitive to the global climate over geological time scales, but with little known about OC burial and its regulations over glacial-interglacial cycles. Here, we present a long-term OC record over the past ∼380 kyr, from the Northwest Pacific Ocean, an ideal region for studying OC burial and its environmental implications on glacial-interglacial timescales. We observed a distinct cyclicity of higher OC burial in glacial periods, which was coupled with input from Asian dust and the Kuroshio Current but seemingly decoupled from biogenic element contents, implying a limited effect of marine productivity on OC burial. Moreover, the sedimentary record of OC was synchronous with oceanic redox conditions, especially the redox sensitive elements at the sediment-water interface, indicating a relatively reducing conditions that enhanced OC preservation during glacial periods. The overall glacial-interglacial OC burial regime in the Northwest Pacific Ocean was conceptually constructed. It showed a higher efficiency of OC burial during glacial periods and significant degradation during interglacial periods. The findings of this study highlighted the important contribution of environmental redox conditions on OC burial in the deep Northwest Pacific, demonstrating the sensitivity of the carbon cycle to global climate on an orbital scale.
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献