Electric Mode Excitation in the Atmosphere by Magnetospheric Impulses and ULF Waves

Author:

Pilipenko V. A.,Fedorov E. N.,Martines-Bedenko V. A.,Bering E. A.

Abstract

Variations of vertical atmospheric electric field Ez have been attributed mainly to meteorological processes. On the other hand, the theory of electromagnetic waves in the atmosphere, between the bottom ionosphere and earth’s surface, predicts two modes, magnetic H (TE) and electric E (TH) modes, where the E-mode has a vertical electric field component, Ez. Past attempts to find signatures of ULF (periods from fractions to tens of minutes) disturbances in Ez gave contradictory results. Recently, study of ULF disturbances of atmospheric electric field became feasible thanks to project GLOCAEM, which united stations with 1 sec measurements of potential gradient. These data enable us to address the long-standing problem of the coupling between atmospheric electricity and space weather disturbances at ULF time scales. Also, we have reexamined results of earlier balloon-born electric field and ground magnetic field measurements in Antarctica. Transmission of storm sudden commencement (SSC) impulses to lower latitudes was often interpreted as excitation of the electric TH0 mode, instantly propagating along the ionosphere–ground waveguide. According to this theoretical estimate, even a weak magnetic signature of the E-mode ∼1 nT must be accompanied by a burst of Ez well exceeding the atmospheric potential gradient. We have examined simultaneous records of magnetometers and electric field-mills during >50 SSC events in 2007–2019 in search for signatures of E-mode. However, the observed Ez disturbance never exceeded background fluctuations ∼10 V/m, much less than expected for the TH0 mode. We constructed a model of the electromagnetic ULF response to an oscillating magnetospheric field-aligned current incident onto the realistic ionosphere and atmosphere. The model is based on numerical solution of the full-wave equations in the atmospheric-ionospheric collisional plasma, using parameters that were reconstructed using the IRI model. We have calculated the vertical and horizontal distributions of magnetic and electric fields of both H- and E-modes excited by magnetospheric field-aligned currents. The model predicts that the excitation rate of the E-mode by magnetospheric disturbances is low, so only a weak Ez response with a magnitude of ∼several V/m will be produced by ∼100 nT geomagnetic disturbance. However, at balloon heights (∼30 km), electric field of the E-mode becomes dominating. Predicted amplitudes of horizontal electric field in the atmosphere induced by Pc5 pulsations and travelling convection vortices, about tens of mV/m, are in good agreement with balloon electric field and ground magnetometer observations.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference51 articles.

1. Hydromagnetic waves in the magnetosphere and the ionosphere;Alperovich,2007

2. Short-period variations of the vertical electric current in the air;Anisimov;J. Geomagn. Geoelectr.,1984

3. Input of electric mode into the field of Pc3-4 pulsations;Anisimov;Geomagn. Aeron.,1993

4. Global structure of geomagnetic sudden commencements, Planet;Araki;Space Sci.,1977

5. Concerning the possibility to neglect vertical currents during magnetotelluric sounding;Berdichevsky;Izv. AN SSSR, Fizika Zemli, N5,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3