A Novel Tracer Technique to Quantify the Lithogenic Input Flux of Trace Elements to Qinghai Lake

Author:

Zhang Pu,Pei Xuezheng,Cao Chenyang,Chen Chi,Gong Ziqin,Li Xuerou,Pang Jingya,Liang Lihua,Li Xiangzhong,Ning Youfeng,Edwards R.Lawrence

Abstract

Thorium (Th) isotopes were applied to quantify the contributions of lithogenic inputs to the Qinghai Lake (QHH). Concentrations of dissolved 232Th and 230Th were measured in 59 water samples collected from Qinghai Lake and its exogenous recharge rivers. There are significant differences in the concentration of 232Th of the sampled water in QHH that confirm the input of variable lithogenic material sources. The 230Th concentrations were used to calculate a scavenging residence time for Th, which was then applied to calculate the flux of dissolved 232Th by matching the measured concentrations of dissolved 232Th. Then the 232Th content of lithogenic material was used with the solubility of Th from the preliminary particle data from the Qinghai–Qaidam district. When using a Th solubility from particles of 1%, the fluxes of lithogenic material range from 0.03 to 25.25 g/m2/yr in the surface water, consistent with the flux results of settled particles from the previous study. When a large number of exogenous recharge rivers are mixed into the northwest basin of Qinghai Lake, the 232Th content and lithogenic flux of the lake water are mainly influenced by the type and content of the particles in the Buha and Shaliu rivers. Conversely, in south basin with limited recharging rivers, the 232Th content of the lake water away from the estuary is mainly influenced by atmospheric dust. Furthermore, based on the 230Th normalization method (combining with 232Th and τTh), the Buha and Shaliu rivers located in the northwest basin contribute about 90% of the detrital flux to the lake. The lithogenic flux in the southeast lake is dominated by dust flux with a value of ∼0.109 g/m2/yr, while the higher lithogenic flux at the bottom of the lake was likely generated by accumulated sinking particulate matter and resuspension of bottom sediments in September. This study confirms the utility of long-lived Th isotopes to quantify lithogenic inputs based on the Th content of the dissolved lake water and also supply deposition resolution information for QHH sediment records with some certainty.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3