The influencing factors of gas adsorption behaviors in shale gas reservoirs

Author:

Lin Xiaoying,Liu Caijie,Wang Zhirong

Abstract

The adsorption state is one of the main states for shale gas occurrence, and the gas adsorption behavior in shale directly affects shale gas content under reservoir conditions. This paper provides a comprehensive literature review on shale gas adsorption behavior and its affecting factors that have been developed in recent years. Influence factors of gas adsorption behavior are examined, including total organic carbon content (TOC), organic matter type, organic matter maturity, minerals and clay minerals, moisture content, pore characteristics and other characteristics of the shale itself. The characteristics of gas adsorption behavior under high temperature and pressure conditions showed that adsorption behaviors were difficult to describe by the Langmuir equation. This review indicates that shale contains higher organic matter content and organic matter maturity and has a higher adsorption capacity. The adsorption capacity with type III kerogen is higher than that for type II or type I. Clay minerals can provide free space for gas adsorption and promote adsorption. Normally, as the moisture content increased, adsorption capacity decreased. Micro pores provided a larger specific surface area for gas adsorption. As the temperature increased, the adsorption capacity decreased. As the pressure increased, shale adsorption characteristics showed two different behaviors as follows: one obeyed the Langmuir equation, and the other presented an inverted, U-shaped, single-peak distribution. However, there are some controversies surrounding adsorption, especially regarding the aspects of clay minerals, water content, pore characteristics, etc. The key is that the mechanism of adsorption in shale is unclear. There will be many new challenges in the field of shale gas adsorption research. Such challenges include studying the organic matter chemical structure, understanding the interaction between organic matter and clay minerals and how they affect adsorption, clarifying gas adsorption behavior changes, predicting favorable areas of adsorbed gas with the coupling of reservoir temperature and pressure, and building a better theory and model of shale gas adsorption.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3