Temporal clustering of fissural eruption across multiple segments within the Ethiopian Rift

Author:

Siegburg Melanie,Gernon Thomas M.,Keir Derek,Bull Jonathan M.,Taylor Rex N.,Watts Emma J.,Greenfield Tim,Gebru Ermias F.

Abstract

Magmatic continental rifts show evidence that discrete rift segments experience episodic intrusive and eruptive events, more commonly termed rifting episodes. However, whether multiple rifting episodes across adjacent rift segments are clustered in time is not well understood. To address this issue, we conduct new radiocarbon dating that constrains the timing of the most recent rifting episode at the Boset magmatic segment of the northern Ethiopian rift, and combine this with historical dating of similar rifting events in the adjacent magmatic segments. New radiocarbon dates of multiple charcoal samples from the base of the most recent fissural lava at the Boset Volcanic Complex indicate that it likely occurred between 1812 and 1919 CE. These dates are similar to those from historical accounts of fissural eruption from the neighbouring Kone (∼1810 CE), and Fantale (∼1770 to 1808 CE) magmatic segments. We conduct new analysis of major and trace element compositions from these historical fissural lavas, as well as from a fresh-looking lava flow from Beru cone near to Kone volcano. The results of the geochemistry from these flows of all three magmatic segments show compositions that vary in the basalt and trachybasalt fields, with sufficient variation to rule out them having erupted from a single dike intrusion episode. This, combined with the scatter in dates from the radiocarbon analysis and historical accounts, along with the location of each eruption in a discrete and spatially offset magmatic segment, favours an interpretation of each magmatic segment experiencing separate rifting episodes but with these being clustered in time. Mechanisms to explain the clustering of rifting episodes are more speculative but could include stress transfer from dike intrusion and deep crustal hydraulic connection in the plumbing system of multiple segments.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3