Enhancer-Promoter Communication: It’s Not Just About Contact

Author:

Wurmser Annabelle,Basu Srinjan

Abstract

Cis-regulatory elements such as enhancers can be located even a million base pairs away from their cognate promoter and yet modulate gene transcription. Indeed, the 3D organisation of chromatin enables the establishment of long-range enhancer-promoter communication. The observation of long-range enhancer-promoter chromatin loops at active genes originally led to a model in which enhancers and promoters form physical contacts between each other to control transcription. Yet, recent microscopy data has challenged this prevailing activity-by-contact model of enhancer-promoter communication in transcriptional activation. Live single-cell imaging approaches do not systematically reveal a correlation between enhancer-proximity and transcriptional activation. We therefore discuss the need to move from a static to a dynamic view of enhancer-promoter relationships. We highlight recent studies that not only reveal considerable chromatin movement in specific cell types, but suggest links between chromatin compaction, chromatin movement and transcription. We describe the interplay between enhancer-promoter proximity within the context of biomolecular condensates and the need to understand how condensate microenvironments influence the chromatin binding kinetics of proteins that bind at cis-regulatory elements to activate transcription. Finally, given the complex multi-scale interplay between regulatory proteins, enhancer-promoter proximity and movement, we propose the need to integrate information from complementary single-cell next-generation sequencing and live-cell imaging approaches to derive unified 3D theoretical models of enhancer-promoter communication that are ultimately predictive of transcriptional output and cell fate. In time, improved models will shed light on how tissues grow and diseases emerge.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3