Development of Personalized Signature Based on the Immune Landscape to Predict the Prognosis of Osteosarcoma and the Response to Immunotherapy and Targeted Therapy

Author:

Feng Xiaofei,Zhao Zhenrui,Zhao Yuhao,Song Zhengdong,Ma Yao,Wang Wenji

Abstract

As a heterogeneous and aggressive disease, osteosarcoma (OS) faces great challenges to prognosis and individualized treatment. Hence, we explore the role of immune-related genes in predicting prognosis and responsiveness to immunotherapy and targeted therapies in patients with OS based on the immunological landscape of osteosarcoma. Based on the database of the Therapeutical Applicable Research to Generate Effective Treatments (TARGET), single-sample gene set enrichment analysis (ssGSEA) was used to obtain the enrichment scores of 29 immune characteristics. A series of bioinformatics methods were performed to construct the immune-related prognostic signature (IRPS). Gene set enrichment analysis and gene set variation analysis were used to explore the biological functions of IRPS. We also analyzed the relationship between IRPS and tumor microenvironment. Lastly, the reactivity of IRPS to immune checkpoint therapy and targeted drugs was explored. The ssGSEA algorithm was used to define two immune subtypes, namely Immunity_High and Immunity_Low. Immunity_High was associated with a good prognosis and was an independent prognostic factor of OS. The IRPS containing 7 genes was constructed by the least absolute shrinkage and selection operator Cox regression. The IRPS can divide patients into low- and high-risk patients. Compared with high-risk patients, low-risk patients had a better prognosis and were positively correlated with immune cell infiltration and immune function. Low-risk patients benefited more from immunotherapy, and the sensitivity of targeted drugs in high- and low-risk groups was determined. IRPS can be used to predict the prognosis of OS patients, and provide therapeutic responsiveness to immunotherapy and targeted therapy.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3