Author:
Huang Chuanbo,Zhou Yuan,Yang Jichun,Cui Qinghua,Li Yanhui
Abstract
One prominent class of drugs is chemical small molecules (CSMs), but the majority of CSMs are of very low druggable potential. Therefore, it is quite important to predict drug-related properties (druggable properties) for candidate CSMs. Currently, a number of druggable properties (e.g., logP and pKa) can be calculated by in silico methods; still the identification of druggable CSMs is a high-risk task, and new quantitative metrics for the druggable potential of CSMs are increasingly needed. Here, we present normalized bond energy (NBE), a new metric for the above purpose. By applying NBE to the DrugBank CSMs whose properties are largely known, we revealed that NBE is able to describe a number of critical druggable properties including logP, pKa, membrane permeability, blood–brain barrier penetration, and human intestinal absorption. Moreover, given that the human endogenous metabolites can serve as important resources for drug discovery, we applied NBE to the metabolites in the Human Metabolome Database. As a result, NBE showed a significant difference in metabolites from various body fluids and was correlated with some important properties, including melting point and water solubility.
Subject
Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献