Author:
Song Yingnan,Yin Zhe,Zhang Chuan,Hao Shengju,Li Haibo,Wang Shifan,Yang Xiangchun,Li Qiong,Zhuang Danyan,Zhang Xinyuan,Cao Zongfu,Ma Xu
Abstract
Phenylketonuria (PKU) is a genetic disorder with amino acid metabolic defect, which does great harms to the development of newborns and children. Early diagnosis and treatment can effectively prevent the disease progression. Here we developed a PKU screening model using random forest classifier (RFC) to improve PKU screening performance with excellent sensitivity, false positive rate (FPR) and positive predictive value (PPV) in all the validation dataset and two testing Chinese populations. RFC represented outstanding advantages comparing several different classification models based on machine learning and the traditional logistic regression model. RFC is promising to be applied to neonatal PKU screening.
Subject
Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献