Ab-initio evaluation of acid influence on chemical stability of hydrophilic diglycolamides

Author:

Luštinec Jakub,Koubský Tomáš,Kalvoda Ladislav

Abstract

Diglycolamides (DGA) form one of the most promising groups of organic ligands used in bio-inspired solvent extraction processes of lanthanide and actinide ions. Continuous experimental and theoretical research is still performed in order to further improve their application properties including their chemical stability in the real extraction environment. This work provides results of our theoretical approach focused on inclusion of an acid influence on the DGAs chemical structure, treated in frame of the density functional theory. Three different models describing the acid action are proposed and investigated in attempt to increase the resulting accuracy of the chemical stability predictions based on verified theoretical descriptors. The procedure is applied and tested on the set of selected hydrophilic DGA representatives. Comparison of the model results obtained with and without acid action shows that two types of protection effects may occur: a ‘direct’ protection, accompanied by an explicit change of the ligand stability indicators, and an ‘indirect’ one consisting in reaction of acid molecules with radicals preceding the contact of latter with the extracting ligands. The possibility of the direct acid protection route is supported by the significant decrease of the Fukui charges found with the acid models included. On the other hand, there is in general no significant difference of trends in the calculated chemical stability descriptors suggesting that an indirect mechanism must be also considered in order to explain the experimentally observed protective role of acids on the chemical stability of investigated DGA derivatives.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3