Deep multi-modal intermediate fusion of clinical record and time series data in mortality prediction

Author:

Niu Ke,Zhang Ke,Peng Xueping,Pan Yijie,Xiao Naian

Abstract

In intensive care units (ICUs), mortality prediction is performed by combining information from these two sources of ICU patients by monitoring patient health. Respectively, time series data generated from each patient admission to the ICU and clinical records consisting of physician diagnostic summaries. However, existing mortality prediction studies mainly cascade the multimodal features of time series data and clinical records for prediction, ignoring thecross-modal correlation between the underlying features in different modal data. To address theseissues, we propose a multimodal fusion model for mortality prediction that jointly models patients’ time-series data as well as clinical records. We apply a fine-tuned Bert model (Bio-Bert) to the patient’s clinical record to generate a holistic embedding of the text part, which is then combined with the output of an LSTM model encoding the patient’s time-series data to extract valid features. The global contextual information of each modal data is extracted using the improved fusion module to capture the correlation between different modal data. Furthermore, the improved fusion module can be easily added to the fusion features of any unimodal network and utilize existing pre-trained unimodal model weights. We use a real dataset containing 18904 ICU patients to train and evaluate our model, and the research results show that the representations obtained by themodel can achieve better prediction accuracy compared to the baseline.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Review of Multimodal Deep Learning Approaches for COVID-19 Diagnosis;Image Analysis and Processing - ICIAP 2023 Workshops;2024

2. An inter-frame motion solving method based on semantic assistance;Measurement Science and Technology;2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3