A Computer-Aided Approach for the Discovery of D-Peptides as Inhibitors of SARS-CoV-2 Main Protease

Author:

Hernández González Jorge E.,Eberle Raphael J.,Willbold Dieter,Coronado Mônika A.

Abstract

The SARS-CoV-2 main protease, also known as 3-chymotrypsin-like protease (3CLpro), is a cysteine protease responsible for the cleavage of viral polyproteins pp1a and pp1ab, at least, at eleven conserved sites, which leads to the formation of mature nonstructural proteins essential for the replication of the virus. Due to its essential role, numerous studies have been conducted so far, which have confirmed 3CLpro as an attractive drug target to combat Covid-19 and have reported a vast number of inhibitors and their co-crystal structures. Despite all the ongoing efforts, D-peptides, which possess key advantages over L-peptides as therapeutic agents, have not been explored as potential drug candidates against 3CLpro. The current work fills this gap by reporting an in silico approach for the discovery of D-peptides capable of inhibiting 3CLpro that involves structure-based virtual screening (SBVS) of an in-house library of D-tripeptides and D-tetrapeptides into the protease active site and subsequent rescoring steps, including Molecular Mechanics Generalized-Born Surface Area (MM-GBSA) free energy calculations and molecular dynamics (MD) simulations. In vitro enzymatic assays conducted for the four top-scoring D-tetrapeptides at 20 μM showed that all of them caused 55–85% inhibition of 3CLpro activity, thus highlighting the suitability of the devised approach. Overall, our results present a promising computational strategy to identify D-peptides capable of inhibiting 3CLpro, with broader application in problems involving protein inhibition.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3