Computational Studies on T2Rs Agonist-Based Anti–COVID-19 Drug Design

Author:

Dhanaraj Premnath,Muthiah Indiraleka,Rozbu Mahtabin Rodela,Nuzhat Samiha,Paulraj Mosae Selvakumar

Abstract

The expeditious and world pandemic viral disease of new coronavirus (SARS-CoV-2) has formed a prompt urgency to discover auspicious target-based ligand for the treatment of COVID-19. Symptoms of novel coronavirus disease (COVID-19) typically include dry cough, fever, and shortness of breath. Recent studies on many COVID-19 patients in Italy and the United Kingdom found increasing anosmia and ageusia among the COVID-19-infected patients. SARS-CoV-2 possibly infects neurons in the nasal passage and disrupts the senses of smell and taste, like other coronaviruses, such as SARS-CoV and MERS-CoV that could target the central nervous system. Developing a drug based on the T2Rs might be of better understanding and worth finding better molecules to act against COVID-19. In this research, we have taken a taste receptor agonist molecule to find a better core molecule that may act as the best resource to design a drug or corresponding derivatives. Based on the computational docking studies, the antibiotic tobramycin showed the best interaction against 6LU7 COVID-19 main protease. Aromatic carbonyl functional groups of the molecule established intermolecular hydrogen bonding interaction with GLN189 amino acid and it showed the two strongest carbonyl interactions with receptor protein resulting in a glide score of −11.159. To conclude, depending on the molecular recognition of the GPCR proteins, the agonist molecule can be recognized to represent the cell secondary mechanism; thus, it provides enough confidence to design a suitable molecule based on the tobramycin drug.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3