Zinc phthalocyanine loaded- antibody functionalized nanoparticles enhance photodynamic therapy in monolayer (2-D) and multicellular tumour spheroid (3-D) cell cultures

Author:

Simelane Nokuphila Winifred Nompumelelo,Abrahamse Heidi

Abstract

In conventional photodynamic therapy (PDT), effective delivery of photosensitizers (PS) to cancer cells can be challenging, prompting the exploration of active targeting as a promising strategy to enhance PS delivery. Typically, two-dimensional (2-D) monolayer cell culture models are used for investigating targeted photodynamic therapy. However, despite their ease of use, these cell culture models come with certain limitations due to their structural simplicity when compared to three-dimensional (3-D) cell culture models such as multicellular tumour spheroids (MCTSs). In this study, we prepared gold nanoparticles (AuNPs) that were functionalized with antibodies and loaded with tetra sulphonated zinc phthalocyanine (ZnPcS4). Characterization techniques including transmission electron microscopy (TEM) was used to determine the size and morphology of the prepared nanoconjugates. We also conducted a comparative investigation to assess the photodynamic effects of ZnPcS4 alone and/or conjugated onto the bioactively functionalized nanodelivery system in colorectal Caco-2 cells cultured in both in vitro 2-D monolayers and 3-D MCTSs. TEM micrographs revealed small, well distributed, and spherical shaped nanoparticles. Our results demonstrated that biofunctionalized nanoparticle mediated PDT significantly inhibited cell proliferation and induced apoptosis in Caco-2 cancer monolayers and, to a lesser extent, in Caco-2 MCTSs. Live/dead assays further elucidated the impact of actively targeted nanoparticle-photosensitizer nanoconstruct, revealing enhanced cytotoxicity in 2-D cultures, with a notable increase in dead cells post-PDT. In 3-D spheroids, however, while the presence of targeted nanoparticle-photosensitizer system facilitated improved therapeutic outcomes, the live/dead results showed a higher number of viable cells after PDT treatment compared to their 2-D monolayer counterparts suggesting that MCTSs showed more resistance to PS drug as compared to 2-D monolayers. These findings suggest a high therapeutic potential of the multifunctional nanoparticle as a targeted photosensitizer delivery system in PDT of colorectal cancer. Furthermore, the choice of cell culture model influenced the response of cancer cells to PDT treatment, highlighting the feasibility of using MCTSs for targeted PS delivery to colorectal cancer cells.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3