Unsupervised neural network for single cell Multi-omics INTegration (UMINT): an application to health and disease

Author:

Maitra Chayan,Seal Dibyendu B.,Das Vivek,De Rajat K.

Abstract

Multi-omics studies have enabled us to understand the mechanistic drivers behind complex disease states and progressions, thereby providing novel and actionable biological insights into health status. However, integrating data from multiple modalities is challenging due to high dimensionality and diverse nature of data, and noise associated with each platform. Sparsity in data, non-overlapping features and technical batch effects make the task of learning more complicated. Conventional machine learning (ML) tools are not quite effective against such data integration hazards due to their simplistic nature with less capacity. In addition, existing methods for single cell multi-omics integration are computationally expensive. Therefore, in this work, we have introduced a novel Unsupervised neural network for single cell Multi-omics INTegration (UMINT). UMINT serves as a promising model for integrating variable number of single cell omics layers with high dimensions. It has a light-weight architecture with substantially reduced number of parameters. The proposed model is capable of learning a latent low-dimensional embedding that can extract useful features from the data facilitating further downstream analyses. UMINT has been applied to integrate healthy and disease CITE-seq (paired RNA and surface proteins) datasets including a rare disease Mucosa-Associated Lymphoid Tissue (MALT) tumor. It has been benchmarked against existing state-of-the-art methods for single cell multi-omics integration. Furthermore, UMINT is capable of integrating paired single cell gene expression and ATAC-seq (Transposase-Accessible Chromatin) assays as well.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3