Author:
Wu Jipeng,Zhang Ming,Yang Delong,Wei Feng,Xiao Naian,Shi Lei,Liu Huifeng,Shang Peng
Abstract
The tooth arrangements of human beings are challenging to accurately observe when relying on dentists’ naked eyes, especially for dental caries in children, which is difficult to detect. Cone-beam computer tomography (CBCT) is used as an auxiliary method to measure patients’ teeth, including children. However, subjective and irreproducible manual measurements are required during this process, which wastes much time and energy for the dentists. Therefore, a fast and accurate tooth segmentation algorithm that can replace repeated calculations and annotations in manual segmentation has tremendous clinical significance. This study proposes a local contextual enhancement model for clinical dental CBCT images. The local enhancement model, which is more suitable for dental CBCT images, is proposed based on the analysis of the existing contextual models. Then, the local enhancement model is fused into an encoder–decoder framework for dental CBCT images. At last, extensive experiments are conducted to validate our method.
Funder
Natural Science Foundation of Fujian Province
Subject
Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Semi or fully automatic tooth segmentation in CBCT images: a review;PeerJ Computer Science;2024-04-19
2. Deep learning-based tooth segmentation methods in medical imaging: A review;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2024-02