Author:
Tong Tianyang,Zhou Yajie,Fei Fan,Zhou Xiujuan,Guo Zhen,Wang Shun,Zhang Jing,Zhang Peng,Cai Tiantian,Li Guohui,Zhang Yuebin,Wang Junfeng,Xie Can
Abstract
Iron-sulfur proteins play essential roles in a wide variety of cellular processes such as respiration, photosynthesis, nitrogen fixation and magnetoreception. The stability of iron-sulfur clusters varies significantly between anaerobic and aerobic conditions due to their intrinsic sensitivity to oxygen. Iron-sulfur proteins are well suited to various practical applications as molecular redox sensors or molecular “wires” for electron transfer. Various technologies have been developed recently using one particular iron-sulfur protein, MagR, as a magnetic tag. However, the limited protein stability and low magnetic sensitivity of MagR hindered its wide application. Here in this study, the iron-sulfur binding site of pigeon clMagR was rationally re-designed. One such mutation, T57C in pigeon MagR, showed improved iron-sulfur binding efficiency and higher iron content, as well as prolonged thermostability. Thus, clMagRT57C can serve as a prototype for further design of more stable and sensitive magnetic toolbox for magnetogenetics in the future.
Funder
Hefei Institutes of Physical Science, Chinese Academy of Sciences
National Natural Science Foundation of China
Subject
Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献