Iron-induced kidney cell damage: insights into molecular mechanisms and potential diagnostic significance of urinary FTL

Author:

Punchai Soraya,Chaiyagot Nachayada,Artkaew Nadthanicha,Jusakul Apinya,Cha’on Ubon,Thanan Raynoo,Vaeteewoottacharn Kulthida,Lert-Itthiporn Worachart

Abstract

Background: Iron overload can lead to organ and cell injuries. Although the mechanisms of iron-induced cell damage have been extensively studied using various cells, little is known about these processes in kidney cells.Methods: In this study, we first examined the correlation between serum iron levels and kidney function. Subsequently, we investigated the molecular impact of excess iron on kidney cell lines, HEK293T and HK-2. The presence of the upregulated protein was further validated in urine.Results: The results revealed that excess iron caused significant cell death accompanied by morphological changes. Transcriptomic analysis revealed an up-regulation of the ferroptosis pathway during iron treatment. This was confirmed by up-regulation of ferroptosis markers, ferritin light chain (FTL), and prostaglandin-endoperoxide synthase 2 (PTGS2), and down-regulation of acyl-CoA synthetase long-chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4) using real-time PCR and Western blotting. In addition, excess iron treatment enhanced protein and lipid oxidation. Supportively, an inverse correlation between urinary FTL protein level and kidney function was observed.Conclusion: These findings suggest that excess iron disrupts cellular homeostasis and affects key proteins involved in kidney cell death. Our study demonstrated that high iron levels caused kidney cell damage. Additionally, urinary FTL might be a useful biomarker to detect kidney damage caused by iron toxicity. Our study also provided insights into the molecular mechanisms of iron-induced kidney injury, discussing several potential targets for future interventions.

Publisher

Frontiers Media SA

Reference43 articles.

1. Review on iron and its importance for human health;Abbaspour;J. Res. Med. Sci.,2014

2. The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death;Ai;Mol. Cell,2024

3. Ferrotoxicity and its amelioration by endogenous vitamin D in experimental acute kidney injury;Annamalai;Exp. Biol. Med. (Maywood),2020

4. Mitochondrial redox signaling and oxidative stress in kidney diseases;Aranda-Rivera;Biomolecules,2021

5. Nrf2 activation in chronic kidney disease: promises and pitfalls;Aranda-Rivera;Antioxidants (Basel),2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3