Long wavelength-sensing cones of zebrafish retina exhibit multiple layers of transcriptional heterogeneity

Author:

Farre Ashley A.,Sun Chi,Starostik Margaret R.,Hunter Samuel S.,English Milton A.,Duncan Audrey,Santhanam Abirami,Shihabeddin Eyad,O’Brien John,Swaroop Anand,Stenkamp Deborah L.

Abstract

IntroductionUnderstanding how photoreceptor genes are regulated is important for investigating retinal development and disease. While much is known about gene regulation in cones, the mechanism by which tandemly-replicated opsins, such as human long wavelength-sensitive and middle wavelength-sensitive opsins, are differentially regulated remains elusive. In this study, we aimed to further our understanding of transcriptional heterogeneity in cones that express tandemly-replicated opsins and the regulation of such differential expression using zebrafish, which express the tandemly-replicated opsins lws1 and lws2.MethodsWe performed bulk and single cell RNA-Seq of LWS1 and LWS2 cones, evaluated expression patterns of selected genes of interest using multiplex fluorescence in situ hybridization, and used exogenous thyroid hormone (TH) treatments to test selected genes for potential control by thyroid hormone: a potent, endogenous regulator of lws1 and lws2 expression.ResultsOur studies indicate that additional transcriptional differences beyond opsin expression exist between LWS1 and LWS2 cones. Bulk RNA-Seq results showed 95 transcripts enriched in LWS1 cones and 186 transcripts enriched in LWS2 cones (FC > 2, FDR < 0.05). In situ hybridization results also reveal underlying heterogeneity within the lws1- and lws2-expressing populations. This heterogeneity is evident in cones of mature zebrafish, and further heterogeneity is revealed in transcriptional responses to TH treatments.DiscussionWe found some evidence of coordinate regulation of lws opsins and other genes by exogenous TH in LWS1 vs. LWS2 cones, as well as evidence of gene regulation not mediated by TH. The transcriptional differences between LWS1 and LWS2 cones are likely controlled by multiple signals, including TH.

Funder

National Eye Institute

Directorate for Biological Sciences

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience

Reference63 articles.

1. Vax2 regulates retinoic acid distribution and cone opsin expression in the vertebrate eye.;Alfano;Development,2011

2. Transcription factors underlying photoreceptor diversity.;Angueyra;Elife,2023

3. Transcriptional control of cone photoreceptor diversity by a thyroid hormone receptor.;Aramaki;Proc. Natl. Acad. Sci. U.S.A.,2022

4. Bilateral macular atrophy in blue cone monochromacy (BCM) with loss of the locus control region (LCR) and part of the red pigment gene.;Ayyagari;Mol. Vis.,1999

5. A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis.;Barbieri;Proc. Natl. Acad. Sci. U.S.A.,1999

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3