Long-term potentiation and spatial memory training stimulate the hippocampal expression of RyR2 calcium release channels

Author:

Valdés-Undurraga Ismael,Lobos Pedro,Sánchez-Robledo Virginia,Arias-Cavieres Alejandra,SanMartín Carol D.,Barrientos Genaro,More Jamileth,Muñoz Pablo,Paula-Lima Andrea Cristina,Hidalgo Cecilia,Adasme Tatiana

Abstract

Introduction: Neuronal Ca2+ signals generated through the activation of Ca2+-induced Ca2+ release in response to activity-generated Ca2+ influx play a significant role in hippocampal synaptic plasticity, spatial learning, and memory. We and others have previously reported that diverse stimulation protocols, or different memory-inducing procedures, enhance the expression of endoplasmic reticulum-resident Ca2+ release channels in rat primary hippocampal neuronal cells or hippocampal tissue.Methods and Results: Here, we report that induction of long-term potentiation (LTP) by Theta burst stimulation protocols of the CA3-CA1 hippocampal synapse increased the mRNA and protein levels of type-2 Ryanodine Receptor (RyR2) Ca2+ release channels in rat hippocampal slices. Suppression of RyR channel activity (1 h preincubation with 20 μM ryanodine) abolished both LTP induction and the enhanced expression of these channels; it also promoted an increase in the surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR1 and GluR2 and caused a moderate but significant reduction of dendritic spine density. In addition, training rats in the Morris water maze induced memory consolidation, which lasted for several days after the end of the training period, accompanied by an increase in the mRNA levels and the protein content of the RyR2 channel isoform.Discussion: We confirm in this work that LTP induction by TBS protocols requires functional RyR channels. We propose that the increments in the protein content of RyR2 Ca2+ release channels, induced by LTP or spatial memory training, play a significant role in hippocampal synaptic plasticity and spatial memory consolidation.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3