Advancing Peripheral Nerve Graft Transplantation for Incomplete Spinal Cord Injury Repair

Author:

Kjell Jacob,Svensson Mikael

Abstract

Peripheral nerves have a propensity for axon growth and regeneration that the central nervous system lacks (CNS). However, CNS axons can also grow long distances if introduced to a graft harvested from a peripheral nerve (PNGs), which is the rationale for using PNGs as repair strategy for injuries of the spinal cord. From a clinical perspective, PNGs provide interesting possibilities with potential to repair the injured spinal cord. First, there are numerous options to harvest autologous grafts associated with low risk for the patient. Second, a PNG allow axons to grow considerable distances and can, by the surgical procedure, be navigated to specific target sites in the CNS. Furthermore, a PNG provides all necessary biological substrates for myelination of elongating axons. A PNG can thus be suited to bridge axons long distances across an injury site and restore long tracts in incomplete SCI. Experimentally, locomotor functions have been improved transplanting a PNG after incomplete injury. However, we still know little with regard to the formation of new circuitries and functional outcome in association to when, where, and how grafts are inserted into the injured spinal cord, especially for sensory functions. In this perspective, we discuss the advantages of PNG from a clinical and surgical perspective, the need for adding/repairing long tracts, how PNGs are best applied for incomplete injuries, and the unexplored areas we believe are in need of answers.

Funder

Karolinska Institutet

Magnus Bergvalls Stiftelse

Vetenskapsrådet

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience

Reference44 articles.

1. Functional regeneration of respiratory pathways after spinal cord injury.;Alilain;Nature,2011

2. Axonal regeneration from injured neurons in the adult mammalian central nervous system;Aguayo;Synaptic Plasticity,1985

3. The dorsal column lesion model of spinal cord injury and its use in deciphering the neuron-intrinsic injury response.;Attwell;Dev. Neurobiol.,2018

4. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.;Bareyre;Nat. Neurosci.,2004

5. Moving beyond the glial scar for spinal cord repair.;Bradbury;Nat. Commun.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3