Women's Rugby League: Positional Groups and Peak Locomotor Demands

Author:

Cummins Cloe,Charlton Glen,Paul David,Shorter Kath,Buxton Simon,Caia Johnpaul,Murphy Aron

Abstract

The aims of this study were to (a) use a data-based approach to identify positional groups within National Rugby League Women's (NRLW) match-play and (b) quantify the peak locomotor demands of NRLW match-play by positional groups. Microtechnology (Global Navigational Satellite System [GNSS] and integrated inertial sensors; n = 142 files; n = 76 players) and match statistics (n = 238 files; n = 80 players) were collected from all NRLW teams across the 2019 season. Data-based clustering of match statistics was utilized to identify positional clusters through classifying individual playing positions into distinct positional groups. Moving averages (0.5, 1, 2, 3, 5, and 10 min) of peak running and average acceleration/deceleration demands were calculated via microtechnology data for each player per match. All analysis was undertaken in R (R Foundation for Statistical Computing) with positional differences determined via a linear mixed model and effect sizes (ES). Data-based clustering suggested that, when informed by match statistics, individual playing positions can be clustered into one of three positional groups. Based on the clustering of the individual positions, these groups could be broadly defined as backs (fullback, wing, and center), adjustables (halfback, five-eighth, and hooker), and forwards (prop, second-row, and lock). Backs and adjustables demonstrated greater running (backs: ES 0.51–1.00; p < 0.05; adjustables: ES 0.51–0.74, p < 0.05) and average acceleration/deceleration (backs: ES 0.48–0.87; p < 0.05; adjustables: ES 0.60–0.85, p < 0.05) demands than forwards across all durations. Smaller differences (small to trivial) were noted between backs and adjustables across peak running and average acceleration/deceleration demands. Such findings suggest an emerging need to delineate training programs in situations in which individual playing positions train in positional group based settings. Collectively, this work informs the positional groupings that could be applied when examining NRLW data and supports the development of a framework for specifically training female rugby league players for the demands of the NRLW competition.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3