Spatiotemporal and kinematic adjustments in master runners may be associated with the relative physiological effort during running

Author:

Jamkrajang Parunchaya,Suwanmana Sarit,Limroongreungrat Weerawat,Verheul Jasper

Abstract

Master runners maintain a similar running economy to young runners, despite displaying biomechanical characteristics that are associated with a worse running economy. This apparent paradox may be explained by a greater physiological effort—i.e., percentage of maximal oxygen uptake (VO2-max)—that master runners perform at a given speed. Moreover, age-related responses to non-exhaustive sustained running are yet underexplored. The aims of this study were, therefore, to examine if biomechanical adjustments in master runners are physiological-effort dependent, and to explore the age-related biomechanical changes during a non-exhaustive sustained run. Young (23.9 ± 6; n = 12) and master (47.3 ± 6.9; n = 12) runners performed a sustained 30-minute treadmill run matched for relative physiological effort (70% VO2-max), while spatiotemporal and lower-limb kinematic characteristics were collected during the 1st and 30th minute. Group differences were observed in step/stride length, knee touch-down angle, and knee stiffness. However, both groups of runners had a similar step frequency, vertical center of mass oscillation, and knee range of motion. Age-related adjustment in these latter characteristics may thus not be an inevitable result of the aging process but rather a strategy to maintain running economy. The relative physiological effort of runners should, therefore, be considered when examining age-related adjustments in running biomechanics.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health,Tourism, Leisure and Hospitality Management,Anthropology,Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3