Speed-dependent modulations of asymmetric center of body mass trajectory in the gait of above-knee amputee subjects

Author:

Takiyama Ken,Yokoyama Hikaru

Abstract

How to achieve stable locomotion while overcoming various instabilities is an ongoing research topic. One essential factor for achieving a stable gait is controlling the center of body mass (CoM). The CoM yields more instability in the mediolateral direction. Examining speed-dependent modulations of the CoM trajectories in the frontal plane can provide insight into control policies for achieving stable locomotion. Although these modulations have been studied while assuming symmetric CoM trajectories, this assumption is generally incorrect. For example, amputee subjects demonstrate asymmetric CoM trajectories. Here, we investigated speed-dependent modulations of asymmetric CoM trajectories in above-knee amputee subjects using Fourier series expansion. Despite the asymmetric CoM trajectories in amputee subjects, the framework of Fourier series expansion clarified that amputee subjects showed the same speed-dependent modulations as non-amputee subjects whose CoM trajectories were symmetric. Specifically, CoM trajectories became narrower in the mediolateral direction and broader in the superoinferior direction as walking speed increased. The speed-dependent modulations of CoM trajectories had a functional role in improving dynamic stability, and faster walking speeds provided greater dynamic stability on both prosthetic and non-prosthetic sides. Although the asymmetry of foot contact duration and CoM trajectory decreased as walking speed increased, step width and the asymmetry of dynamic stability between prosthetic and non-prosthetic sides remained constant across the walking speed, which corresponded to the predictions by our framework. These findings could offer a better strategy for achieving stable walking for amputee subjects.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3