Biological reliability of a movement analysis assessment using a markerless motion capture system

Author:

Philipp Nicolas M.,Fry Andrew C.,Mosier Eric M.,Cabarkapa Dimitrije,Nicoll Justin X.,Sontag Stephanie A.

Abstract

IntroductionAdvances in motion capture technology include markerless systems to facilitate valid data collection. Recently, the technological reliability of this technology has been reported for human movement assessments. To further understand sources of potential error, biological reliability must also be determined. The aim of this study was to determine the day-to-day reliability for a three-dimensional markerless motion capture (MMC) system to quantify 4 movement analysis composite scores, and 81 kinematic variables.MethodsTwenty-two healthy men (n = 11; X¯±SD; age = 23.0 ± 2.6 years, height = 180.4.8 cm, weight = 80.4 ± 7.3 kg) and women (n = 11; age = 20.8 ± 1.1 years, height = 172.2 ± 7.4 cm, weight = 68.0 ± 7.3 kg) participated in this study. All subjects performed 4 standardized test batteries consisting of 14 different movements on four separate days. A three-dimensional MMC system (DARI Motion, Lenexa, KS) using 8 cameras surrounding the testing area was used to quantify movement characteristics. 1 × 4 RMANOVAs were used to determine significant differences across days for the composite movement analysis scores, and RM-MANOVAs were used to determine test day differences for the kinematic data (p < 0.05). Intraclass correlation coefficients (ICCs) were reported for all variables to determine test reliability. To determine biological variability, mean absolute differences from previously reported technological variability data were subtracted from the total variability data from the present study.ResultsNo differences were observed for any composite score (i.e., athleticism, explosiveness, quality, readiness; or any of the 81 kinematic variables. Furthermore, 84 of 85 measured variables exhibited good to excellent ICCs (0.61–0.99). When compared to previously reported technological variability data, 62.3% of item variability was due to biological variability, with 66 of 85 variables exhibiting biological variability as the primary source of error (i.e., >50% total variability).DiscussionCombined, these findings effectively add to the body of literature suggesting sufficient reliability for MMC solutions in capturing kinematic features of human movement.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3