Variability of the Center of Mass in Trained Triathletes in Running After Cycling: A Preliminary Study Conducted in a Real-Life Setting

Author:

Evans Stuart A.,James Daniel,Rowlands David,Lee James B.

Abstract

While the sport of short-distance (Sprint) triathlon provides an opportunity to research the effect of the center of mass (CoM) when cycling and running, much remains to be done. The literature has failed to consistently or adequately report how changes to hand position influence subsequent running as inferred by the magnitude of CoM acceleration. The demands of cycle training in a drops and aerodynamic position followed by running remain unquantified in Sprint Distance triathlon. Thus, far data collected indicate that the cycle to run transition (T2) is important for overall race success. While many age-groupers participate in Sprint Distance triathlon, the lack of T2 based research make comparisons between cycle hand position and ensuing running difficult. The motion of the human body when cycling and running in triathlon can be described by the motion of its CoM in a local coordinate system. Unobtrusive wearable sensors have proven to be an informative resource to monitor the magnitude of CoM accelerations in running. However, the extent to which they are used in cycling is unclear. Therefore, the aim of the present study was to analyse the temporal magnitudes of CoM acceleration when cycling position and cadence is changed and to analyse these effects on running after cycling. Ten recreational triathletes completed two 20 km cycling trials at varied cadence in a drops position (parts of the handlebars that curve outward, CycleDrops) and an aerodynamic position (arms bent, forearms parallel to the ground, CycleAero) immediately followed by a 5 km run at self-selected pace. Torso kinematics by way of CoM acceleration magnitude were captured in a typical training setting using a triaxial accelerometer. CoM acceleration was quantified in m/s2 and variability was measured by the coefficient of variation (CV) and root mean square (RMS). Results from CycleAero indicated that acceleration of the CoM in longitudinal (CV = 1%) and mediolateral directions (CV = 3%) was significantly reduced (p < 0.001) compared to CycleDrops. As for rate of perceived exertion (RPE), a significant difference was observed with triathletes reporting higher values in CycleAero alongside a greater CoM acceleration magnitude in the anteroposterior direction. The CoM varied significantly from RunAero with less longitudinal (CV = 0.2, p < 0.001) and mediolateral acceleration observed (CV = 7.5%, p < 0.001) compared to RunDrops. Although greater longitudinal acceleration was observed in the initial 1 km epoch of RunAero, triathletes then seemingly adjusted their CoM trajectory to record lower magnitudes until completion of the 5 km run, completing the run quicker compared to RunDrops (22.56 min1 ± 0.2, 23.34 min1 ± 0.5, p < 0.001, CV = 1.3%). Coaches may look to use triaxial accelerometers to monitor performance in both cycling and running after cycling.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3