Does the short-term learning effect impact vertical jump performance assessment on a portable force plate system?

Author:

Cabarkapa Damjana V.,Cabarkapa Dimitrije,Aleksic Jelena,Ranisavljev Igor,Fry Andrew C.

Abstract

One of the reoccurring questions that arises during the countermovement vertical jump (CVJ) assessment is whether the learning effect has an impact on the accuracy of the results obtained. Thus, the purpose of the present investigation was to examine the impact of the short-term learning effect on the assessment of lower-body neuromuscular performance characteristics when performed on a portable one-dimensional force plate system. Sixteen recreationally active college-age males volunteered to participate in the present study. Each participant completed four sets of three non-consecutive CVJs with no arm swing throughout a single day. Besides strong verbal encouragement, participants were constantly instructed to focus on pushing the ground as explosively as possible. Fourteen force-time metrics were selected for CVJ performance analysis purposes: eccentric and concentric peak and mean force and power, eccentric and concentric duration, contraction time, jump height, reactive strength index-modified, and countermovement depth. Repeated measures multivariate analysis of variance was used to examine statistically significant differences across four testing time points (p < 0.05). The results indicate an absence of any meaningful differences across four testing time points in force-time metrics of interest during both eccentric and concentric phases of the CVJ. Moreover, no differences were observed in CVJ outcome metrics such as countermovement depth, suggesting that the movement strategy tends to remain consistent. Overall, these findings reveal that CVJ test repeatability is not affected by the short-term learning effect and that data are stable at least within the scope of this study and within this population.

Publisher

Frontiers Media SA

Reference24 articles.

1. Monitoring neuromuscular fatigue in high-performance athletes. (doctoral dissertation);Taylor,2012

2. Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms;Boyas;Ann Phys Rehabil Med,2011

3. Neurobiology of muscle fatigue;Enoka;J Appl Physiol,1992

4. Changes in muscle contractile properties and neural control during human muscular fatigue;Bigland-Ritchie;Muscle Nerve,1984

5. Recovery of central and peripheral neuromuscular fatigue after exercise;Carroll;J Appl Physiol,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3