Performance-environment mutual flow model using big data on baseball pitchers

Author:

Hashimoto Yasuhiro,Nakata Hiroki

Abstract

IntroductionThe study investigated the baseball pitching performance in terms of release speed, spin rate, and 3D coordinate data of the release point depending on the ball and strike counts.MethodsWe used open data provided on the official website of Major League Baseball (MLB), which included data related to 580 pitchers who pitched in the MLB between 2015 and 2019.ResultsThe results show that a higher ball count corresponds to a slower release speed and decreased spin rate, and a higher strike count corresponds to a faster release speed and increased spin rate. For a higher ball count, the pitcher's release point tended to be lower and more forward, while for a higher strike count, the pitcher's release point tended to be to the left from the right pitcher's point of view. This result was more pronounced in 4-seam pitches, which consisted the largest number of pitchers. The same tendency was confirmed in other pitches such as sinker, slider, cut ball, and curve.DiscussionOur findings suggest that the ball count is associated with the pitcher's release speed, spin rate, and 3D coordinate data. From a different perspective, as the pitcher's pitching performance is associated with the ball and strike count, the ball and strike count is associated with pitching performance. With regard to the aforementioned factor, we propose a “performance-environment flow model,” indicating that a player's performance changes according to the game situation, and the game situation consequently changes the player's next performance.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health,Tourism, Leisure and Hospitality Management,Anthropology,Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3