Perturbation-Based Balance Training Using Repeated Trips on a Walkway vs. Belt Accelerations on a Treadmill: A Cross-Over Randomised Controlled Trial in Community-Dwelling Older Adults

Author:

Song Patrick Y. H.,Sturnieks Daina L.,Davis Michael K.,Lord Stephen R.,Okubo Yoshiro

Abstract

Background: Walkway and treadmill induced trips have contrasting advantages, for instance walkway trips have high-ecological validity whereas belt accelerations on a treadmill have high-clinical feasibility for perturbation-based balance training (PBT). This study aimed to (i) compare adaptations to repeated overground trips with repeated treadmill belt accelerations in older adults and (ii) determine if adaptations to repeated treadmill belt accelerations can transfer to an actual trip on the walkway.Method: Thirty-eight healthy community-dwelling older adults underwent one session each of walkway and treadmill PBT in a randomised crossover design on a single day. For both conditions, 11 trips were induced to either leg in pseudo-random locations interspersed with 20 normal walking trials. Dynamic balance (e.g., margin of stability) and gait (e.g., step length) parameters from 3D motion capture were used to examine adaptations in the walkway and treadmill PBT and transfer of adaptation from treadmill PBT to a walkway trip.Results: No changes were observed in normal (no-trip) gait parameters in both training conditions, except for a small (0.9 cm) increase in minimum toe elevation during walkway walks (P < 0.01). An increase in the margin of stability and recovery step length was observed during walkway PBT (P < 0.05). During treadmill PBT, an increased MoS, step length and decreased trunk sway range were observed (P < 0.05). These adaptations to treadmill PBT did not transfer to a walkway trip.Conclusions: This study demonstrated that older adults could learn to improve dynamic stability by repeated exposure to walkway trips as well as treadmill belt accelerations. However, the adaptations to treadmill belt accelerations did not transfer to an actual trip. To enhance the utility of treadmill PBT for overground trip recovery performance, further development of treadmill PBT protocols is recommended to improve ecological authenticity.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3