Hydration Is More Important Than Exogenous Carbohydrate Intake During Push-to-the-Finish Cycle Exercise in the Heat

Author:

Berry Craig W.,Wolf S. Tony,Cottle Rachel M.,Kenney W. Larry

Abstract

Dehydration ≥2% loss of body mass is associated with reductions in performance capacity, and carbohydrate (CHO)-electrolyte solutions (CES) are often recommended to prevent dehydration and provide a source of exogenous carbohydrate during exercise. It is also well established that performance capacity in the heat is diminished compared to cooler conditions, a response attributable to greater cardiovascular strain caused by high skin and core temperatures. Because hydration status, environmental conditions, and carbohydrate availability interact to influence performance capacity, we sought to determine how these factors affect push-to-the-finish cycling performance. Ten young trained cyclists exercised at a moderate intensity (2.5 W·kg−1) in a hot-dry condition [40°C, 20% relative humidity (RH)] until dehydration of ~2% body mass. Subjects then consumed either no fluid (NF) or enough fluid (water, WAT; Gatorade®, GAT; or GoodSport™, GS) to replace 75% of lost body mass over 30 min. After a 30-min light-intensity warm-up (1.5 W·kg−1) in a 35°C, 20% RH environment, subjects then completed a 120-kJ time trial (TT). TT time-to-completion, absolute power, and relative power were significantly improved in WAT (535 ± 214 s, 259 ± 99 W, 3.3 ± 0.9 W·kg−1), GAT (539 ± 226 s, 260 ± 110 W, 3.3 ± 1.0 W·kg−1), and GS (534 ± 238 s, 262 ± 105 W, 3.4 ± 1.0 W·kg−1) compared to NF (631 ± 310 s, 229 ± 96 W, 3.0 ± 0.9 W·kg−1) all (p < 0.01) with no differences between WAT, GAT, and GS, suggesting that hydration is more important than carbohydrate availability during exercise in the heat. A subset of four subjects returned to the laboratory to repeat the WAT, GAT, and GS treatments to determine if between-beverage differences in time-trial performance were evident with a longer TT in thermoneutral conditions. Following dehydration, the ambient conditions in the environmental chamber were reduced to 21°C and 20% RH and subjects completed a 250-kJ TT. All four subjects improved TT performance in the GS trial (919 ± 353 s, 300 ± 100 W, 3.61 ± 0.86 W·kg−1) compared to WAT (960 ± 376 s, 283 ± 91 W, 3.43 ± 0.83 W·kg−1), while three subjects improved TT performance in the GAT trial (946 ± 365 s, 293 ± 103 W, 3.60 ± 0.97 W·kg−1) compared to WAT, highlighting the importance of carbohydrate availability in cooler conditions as the length of a push-to-the-finish cycling task increases.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3