Monitoring Variables Influence on Random Forest Models to Forecast Injuries in Short-Track Speed Skating

Author:

Briand Jérémy,Deguire Simon,Gaudet Sylvain,Bieuzen François

Abstract

Injuries limit the athletes' ability to participate fully in their training and competitive process. They are detrimental to performance, affecting the athletes psychologically while limiting physiological adaptations and long-term development. This study aims to present a framework for developing random forest classifier models, forecasting injuries in the upcoming 1 to 7 days, to assist the performance support staff in reducing injuries and maximizing performance within the Canadian National Female Short-Track Speed Skating Program. Forty different variables monitored daily over two seasons (2018–2019 and 2019–2020) were used to develop two sets of forecasting models. One includes only training load variables (TL), and a second (ALL) combines a wide array of monitored variables (neuromuscular function, heart rate variability, training load, psychological wellbeing, past injury type, and location). The sensitivity (ALL: 0.35 ± 0.19, TL: 0.23 ± 0.03), specificity (ALL: 0.81 ± 0.05, TL: 0.74 ± 0.03) and Matthews Correlation Coefficients (MCC) (ALL: 0.13 ± 0.05, TL: −0.02 ± 0.02) were computed. Paired T-test on the MCC revealed statistically significant (p < 0.01) and large positive effects (Cohen d > 1) for the ALL forecasting models' MCC over every forecasting window (1 to 7 days). These models were highly determined by the athletes' training completion, lower limb and trunk/lumbar injury history, as well as sFatigue, a training load marker. The TL forecasting models' MCC suggests they do not bring any added value to forecast injuries. Combining a wide array of monitored variables and quantifying the injury etiology conceptual components significantly improve the injury forecasting performance of random forest models. The ALL forecasting models' performances are promising, especially on one time windows of one or two days, with sensitivities and specificities being respectively above 0.5 and 0.7. They could add value to the decision-making process for the support staff in order to assist the Canadian National Female Team Short-Track Speed Skating program in reducing the number of incomplete training days, which could potentially increase performance. On longer forecasting time windows, ALL forecasting models' sensitivity and MCC decrease gradually. Further work is needed to determine if such models could be useful for forecasting injuries over three days or longer.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health,Tourism, Leisure and Hospitality Management,Anthropology,Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3