Author:
Mishra Amish,Motta Francis C.
Abstract
Persistent homology (PH) is a robust method to compute multi-dimensional geometric and topological features of a dataset. Because these features are often stable under certain perturbations of the underlying data, are often discriminating, and can be used for visualization of structure in high-dimensional data and in statistical and machine learning modeling, PH has attracted the interest of researchers across scientific disciplines and in many industry applications. However, computational costs may present challenges to effectively using PH in certain data contexts, and theoretical stability results may not hold in practice. In this paper, we define, implement, and investigate a simplicial complex construction for computing persistent homology of Euclidean point cloud data, which we call the Delaunay-Rips complex (DR). By only considering simplices that appear in the Delaunay triangulation of the point cloud and assigning the Vietoris-Rips weights to simplices, DR avoids potentially costly computations in the persistence calculations. We document and compare a Python implementation of DR with other simplicial complex constructions for generating persistence diagrams. By imposing sufficient conditions on point cloud data, we are able to theoretically justify the stability of the persistence diagrams produced using DR. When the Delaunay triangulation of the point cloud changes under perturbations of the points, we prove that DR-produced persistence diagrams exhibit instability. Since we cannot guarantee that real-world data will satisfy our stability conditions, we demonstrate the practical robustness of DR for persistent homology in comparison with other simplicial complexes in machine learning applications. We find in our experiments that using DR in an ML-TDA pipeline performs comparatively well as using other simplicial complex constructions.
Subject
Applied Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献