Stability and machine learning applications of persistent homology using the Delaunay-Rips complex

Author:

Mishra Amish,Motta Francis C.

Abstract

Persistent homology (PH) is a robust method to compute multi-dimensional geometric and topological features of a dataset. Because these features are often stable under certain perturbations of the underlying data, are often discriminating, and can be used for visualization of structure in high-dimensional data and in statistical and machine learning modeling, PH has attracted the interest of researchers across scientific disciplines and in many industry applications. However, computational costs may present challenges to effectively using PH in certain data contexts, and theoretical stability results may not hold in practice. In this paper, we define, implement, and investigate a simplicial complex construction for computing persistent homology of Euclidean point cloud data, which we call the Delaunay-Rips complex (DR). By only considering simplices that appear in the Delaunay triangulation of the point cloud and assigning the Vietoris-Rips weights to simplices, DR avoids potentially costly computations in the persistence calculations. We document and compare a Python implementation of DR with other simplicial complex constructions for generating persistence diagrams. By imposing sufficient conditions on point cloud data, we are able to theoretically justify the stability of the persistence diagrams produced using DR. When the Delaunay triangulation of the point cloud changes under perturbations of the points, we prove that DR-produced persistence diagrams exhibit instability. Since we cannot guarantee that real-world data will satisfy our stability conditions, we demonstrate the practical robustness of DR for persistent homology in comparison with other simplicial complexes in machine learning applications. We find in our experiments that using DR in an ML-TDA pipeline performs comparatively well as using other simplicial complex constructions.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3