Lp-Sampling recovery for non-compact subclasses of L∞

Author:

Byrenheid Glenn,Stasyuk Serhii,Ullrich Tino

Abstract

In this article, we study the sampling recovery problem for certain relevant multivariate function classes on the cube [0, 1]d, which are not compactly embedded into L([0,1]d). Recent tools relating the sampling widths to the Kolmogorov or best m-term trigonometric widths in the uniform norm are therefore not applicable. In a sense, we continue the research on the small smoothness problem by considering limiting smoothness in the context of Besov and Triebel-Lizorkin spaces with dominating mixed regularity such that the sampling recovery problem is still relevant. There is not much information available on the recovery of such functions except for a previous result by Oswald in the univariate case and Dinh Dũng in the multivariate case. As a first step, we prove the uniform boundedness of the ℓp-norm of the Faber coefficients at a fixed level by Fourier analytic means. Using this, we can control the error made by a (Smolyak) truncated Faber series in Lq([0,1]d) with q <∞. It turns out that the main rate of convergence is sharp. Thus, we obtain results also for S1,1F([0,1]d), a space “close” to S11W([0,1]d), which is important in numerical analysis, especially numerical integration, but has rather poor Fourier analytical properties.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3