On physics-informed neural networks for quantum computers

Author:

Markidis Stefano

Abstract

Physics-Informed Neural Networks (PINN) emerged as a powerful tool for solving scientific computing problems, ranging from the solution of Partial Differential Equations to data assimilation tasks. One of the advantages of using PINN is to leverage the usage of Machine Learning computational frameworks relying on the combined usage of CPUs and co-processors, such as accelerators, to achieve maximum performance. This work investigates the design, implementation, and performance of PINNs, using the Quantum Processing Unit (QPU) co-processor. We design a simple Quantum PINN to solve the one-dimensional Poisson problem using a Continuous Variable (CV) quantum computing framework. We discuss the impact of different optimizers, PINN residual formulation, and quantum neural network depth on the quantum PINN accuracy. We show that the optimizer exploration of the training landscape in the case of quantum PINN is not as effective as in classical PINN, and basic Stochastic Gradient Descent (SGD) optimizers outperform adaptive and high-order optimizers. Finally, we highlight the difference in methods and algorithms between quantum and classical PINNs and outline future research challenges for quantum PINN development.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Physics Informed Neural Networks;The 53rd International Conference on Parallel Processing Workshops;2024-08-12

2. Quantum Physics-Informed Neural Networks;Entropy;2024-07-30

3. Physics-informed deep 1D CNN compiled in extended state space fusion for seismic response modeling;Computers & Structures;2024-01

4. Enabling Quantum Computer Simulations on AMD GPUs: a HIP Backend for Google's qsim;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

5. Programming Quantum Neural Networks on NISQ Systems: An Overview of Technologies and Methodologies;Entropy;2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3