Kernel Distance Measures for Time Series, Random Fields and Other Structured Data

Author:

Das Srinjoy,Mhaskar Hrushikesh N.,Cloninger Alexander

Abstract

This paper introduces kdiff, a novel kernel-based measure for estimating distances between instances of time series, random fields and other forms of structured data. This measure is based on the idea of matching distributions that only overlap over a portion of their region of support. Our proposed measure is inspired by MPdist which has been previously proposed for such datasets and is constructed using Euclidean metrics, whereas kdiff is constructed using non-linear kernel distances. Also, kdiff accounts for both self and cross similarities across the instances and is defined using a lower quantile of the distance distribution. Comparing the cross similarity to self similarity allows for measures of similarity that are more robust to noise and partial occlusions of the relevant signals. Our proposed measure kdiff is a more general form of the well known kernel-based Maximum Mean Discrepancy distance estimated over the embeddings. Some theoretical results are provided for separability conditions using kdiff as a distance measure for clustering and classification problems where the embedding distributions can be modeled as two component mixtures. Applications are demonstrated for clustering of synthetic and real-life time series and image data, and the performance of kdiff is compared to competing distance measures for clustering.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Reference24 articles.

1. Everything You Know about Dynamic Time Warping Is Wrong;Ratanamahatana,2004

2. Exact Indexing of Dynamic Time Warping;Keogh;Knowl Inf Syst,2005

3. Autocorrelation-based Fuzzy Clustering of Time Series;D’Urso;Fuzzy Sets Syst,2009

4. A New Correlation-Based Fuzzy Logic Clustering Algorithm for Fmri;Golay;Magn Reson Med,1998

5. Robust Functional Supervised Classification for Time Series;Alonso;J Classif,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3