New metrics for multiple testing with correlated outcomes

Author:

Mathur Maya B.,VanderWeele Tyler J.

Abstract

When investigators test multiple outcomes or fit different model specifications to the same dataset, as in multiverse analyses, the resulting test statistics may be correlated. We propose new multiple-testing metrics that compare the observed number of hypothesis test rejections (θ^) at an unpenalized α-level to the distribution of rejections that would be expected if all tested null hypotheses held (the “global null”). Specifically, we propose reporting a “null interval” for the number of α-level rejections expected to occur in 95% of samples under the global null, the difference between θ^ and the upper limit of the null interval (the “excess hits”), and a one-sided joint test based on θ^ of the global null. For estimation, we describe resampling algorithms that asymptotically recover the sampling distribution under the global null. These methods accommodate arbitrarily correlated test statistics and do not require high-dimensional analyses, though they also accommodate such analyses. In a simulation study, we assess properties of the proposed metrics under varying correlation structures as well as their power for outcome-wide inference relative to existing methods for controlling familywise error rate. We recommend reporting our proposed metrics along with appropriate measures of effect size for all tests. We provide an R package, NRejections. Ultimately, existing procedures for multiple hypothesis testing typically penalize inference in each test, which is useful to temper interpretation of individual findings; yet on their own, these procedures do not fully characterize global evidence strength across the multiple tests. Our new metrics help remedy this limitation.

Funder

National Institutes of Health

John D. and Catherine T. MacArthur Foundation

National Institute on Aging

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Reference41 articles.

1. Outcome-wide epidemiology;VanderWeele;Epidemiology.,2017

2. Specification curve analysis;Simonsohn;Nat Hum Behav.,2020

3. Multiple comparisons among means;Dunn;J Am Stat Assoc.,1961

4. A simple sequentially rejective multiple test procedure;Holm;Scand J Stat.,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3