A kernel mixing strategy for use in adaptive Markov chain Monte Carlo and stochastic optimization contexts

Author:

West Graham,Sinkala Zachariah,Wallin John

Abstract

Performing Markov chain Monte Carlo parameter estimation on complex mathematical models can quickly lead to endless searching through highly multimodal parameter spaces. For computationally complex models, one rarely has prior knowledge of the optimal proposal distribution. In such cases, the Markov chain can become trapped near a suboptimal mode, lowering the computational efficiency of the method. With these challenges in mind, we present a novel MCMC kernel which incorporates both mixing and adaptation. The method is flexible and robust enough to handle parameter spaces that are highly multimodal. Other advantages include not having to locate a near-optimal mode with a different method beforehand, as well as requiring minimal computational and storage overhead from standard Metropolis. Additionally, it can be applied in any stochastic optimization context which uses a Gaussian kernel. We provide results from several benchmark problems, comparing the kernel's performance in both optimization and MCMC cases. For the former, we incorporate the kernel into a simulated annealing method and real-coded genetic algorithm. For the latter, we incorporate it into the standard Metropolis and adaptive Metropolis methods.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Reference28 articles.

1. Equation of state calculations by fast computing machines;Metropolis;J Chem Phys,1953

2. An adaptive metropolis algorithm;Haario;Bernoulli,2001

3. Monte Carlo sampling methods using Markov chains and their applications;Hastings;Biometrika,1970

4. Examples of adaptive MCMC;Roberts;J Comput Graph Stat,2012

5. Optimization by simulated annealing;Kirkpatrick;Science,1983

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3