On Rayleigh-Taylor and Richtmyer-Meshkov Dynamics With Inverse-Quadratic Power-Law Acceleration

Author:

Hill D. L.,Abarzhi S. I.

Abstract

Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities occur in many situations in Nature and technology from astrophysical to atomic scales, including stellar evolution, oceanic flows, plasma fusion, and scramjets. While RT and RM instabilities are sister phenomena, a link of RT-to-RM dynamics requires better understanding. This work focuses on the long-standing problem of RTI/RMI induced by accelerations, which vary as inverse-quadratic power-laws in time, and on RT/RM flows, which are three-dimensional, spatially extended and periodic in the plane normal to the acceleration direction. We apply group theory to obtain solutions for the early-time linear and late-time nonlinear dynamics of RT/RM coherent structure of bubbles and spikes, and investigate the dependence of the solutions on the acceleration’s parameters and initial conditions. We find that the dynamics is of RT type for strong accelerations and is of RM type for weak accelerations, and identify the effects of the acceleration’s strength and the fluid density ratio on RT-to-RM transition. While for given problem parameters the early-time dynamics is uniquely defined, the solutions for the late-time dynamics form a continuous family parameterised by the interfacial shear and include special solutions for RT/RM bubbles/spikes. Our theory achieves good agreement with available observations. We elaborate benchmarks that can be used in future research and in design of experiments and simulations, and that can serve for better understanding of RT/RM relevant processes in Nature and technology.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Reference56 articles.

1. Investigations of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density;Rayleigh;Proc Lond Math Soc,1883

2. The Mechanics of Large Bubbles Rising through Extended Liquids and through Liquids in Tubes;Davies;Proc R Soc A,1950

3. Taylor Instability in Shock Acceleration of Compressible Fluids;Richtmyer;Comm Pure Appl Math,1960

4. Instability of the Interface of Two Gases Accelerated by a Shock;Meshkov;Sov Fluid Dyn,1969

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3