A statistical methodology for classifying earthquake detections and for earthquake parameter estimation in smartphone-based earthquake early warning systems

Author:

Massoda Tchoussi Frank Yannick,Finazzi Francesco

Abstract

Smartphone-based earthquake early warning systems (EEWSs) are emerging as a complementary solution to classic EEWSs based on expensive scientific-grade instruments. Smartphone-based systems, however, are characterized by a highly dynamic network geometry and by noisy measurements. Thus, there is a need to control the probability of false alarms and the probability of missed detection. This study proposes a statistical methodology to address this challenge and to jointly estimate in near real-time earthquake parameters like epicenter and depth. The methodology is based on a parametric statistical model, on hypothesis testing and on Monte Carlo simulation. The methodology is tested using data obtained from the Earthquake Network (EQN), a citizen science initiative that implements a global smartphone-based EEWS. It is discovered that, when the probability to miss an earthquake is fixed at 1%, the probability of false alarm is 0.8%, proving that EQN is a robust smartphone-based EEW system.

Funder

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Reference18 articles.

1. Sensor networks: a bridge to the physical world;Elson,2004

2. A survey of applications of wireless sensors and wireless sensor networks;Arampatzis,2005

3. Local vote decision fusion for target detection in wireless sensor networks;Katenka;IEEE Trans Signal Process,2007

4. Bayesian source detection and parameter estimation of a plume model based on sensor network measurements;Huang;Appl Stochastic Models Business Ind,2010

5. Fire detection and localization using wireless sensor networks;Khadivi,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3