Author:
Jiang Yunyun,Wang Hefei,Cai Yi,Fu Bo
Abstract
The traditional median filter can handle the image salt and pepper noise better. However, when the noise intensity is large, it is often necessary to enlarge the filter window to ensure the denoising effect, but the enlarged window may also cause excessive smoothing of the image, loss of texture details, and blurred edges. In view of the strong edge preservation characteristics of variational model denoising, we propose a salt and pepper noise removal method based on the edge-adaptive total variational model. Firstly, the image is segmented into edge regions and non-edge regions by edge detection operators. Secondly, the salt and pepper noise of the image is processed using the median filter and adaptive total variation model, respectively. Lastly, the non-edge regions processed by the median filter and the edge regions processed by the adaptive total variation model are extracted for splicing. The experimental results show that the method cannot only effectively remove salt and pepper noise, but also effectively protect the main edge details of the image.
Funder
China Postdoctoral Science Foundation
Subject
Applied Mathematics,Statistics and Probability
Reference25 articles.
1. Research on image denoising method based on multi-scale transformation;Fu,2009
2. Nonlinear total variation based noise removal algorithms;Rudin;Physica D: Nonlinear Phenomena.,1992
3. Spatially adapted total variation model to remove multiplicative noise;Chen;IEEE Trans Image Process,2012
4. Topics in variational PDE image segmentation, inpainting and denoising;Bing,2003
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献