Author:
Lewis Ted G.,Al Mannai Waleed I.
Abstract
This article explores the ongoing COVID-19 pandemic, asking how long it might last. Focusing on Bahrain, which has a finite population of 1.7M, it aimed to predict the size and duration of the pandemic, which is key information for administering public health policy. We compare the predictions made by numerical solutions of variations of the Kermack-McKendrick SIR epidemic model and Tsallis-Tirnakli model with the curve-fitting solution of the Bass model of product adoption. The results reiterate the complex and difficult nature of estimating parameters, and how this can lead to initial predictions that are far from reality. The Tsallis-Tirnakli and Bass models yield more realistic results using data-driven approaches but greatly differ in their predictions. The study discusses possible sources for predictive inaccuracies, as identified during our predictions for Bahrain, the United States, and the world. We conclude that additional factors such as variations in social network structure, public health policy, and differences in population and population density are major sources of inaccuracies in estimating size and duration.
Subject
Applied Mathematics,Statistics and Probability
Reference20 articles.
1. Corona virus cases2020
2. A contribution to the mathematical theory of epidemics;Kermack;Proc Royal Soc A,1927
3. A new product growth for model consumer durables;Bass;Manag Sci,1969
4. Forecasting consumer adoption of technological innovation: choosing the appropriate diffusion models for new products and services before launch;Gentry,2007
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献