Real block-circulant matrices and DCT-DST algorithm for transformer neural network

Author:

Asriani Euis,Muchtadi-Alamsyah Intan,Purwarianti Ayu

Abstract

In the encoding and decoding process of transformer neural networks, a weight matrix-vector multiplication occurs in each multihead attention and feed forward sublayer. Assigning the appropriate weight matrix and algorithm can improve transformer performance, especially for machine translation tasks. In this study, we investigate the use of the real block-circulant matrices and an alternative to the commonly used fast Fourier transform (FFT) algorithm, namely, the discrete cosine transform–discrete sine transform (DCT-DST) algorithm, to be implemented in a transformer. We explore three transformer models that combine the use of real block-circulant matrices with different algorithms. We start from generating two orthogonal matrices, U and Q. The matrix U is spanned by the combination of the reals and imaginary parts of eigenvectors of the real block-circulant matrix, whereas Q is defined such that the matrix multiplication QU can be represented in the shape of a DCT-DST matrix. The final step is defining the Schur form of the real block-circulant matrix. We find that the matrix-vector multiplication using the DCT-DST algorithm can be defined by assigning the Kronecker product between the DCT-DST matrix and an orthogonal matrix in the same order as the dimension of the circulant matrix that spanned the real block circulant. According to the experiment's findings, the dense-real block circulant DCT-DST model with largest matrix dimension was able to reduce the number of model parameters up to 41%. The same model of 128 matrix dimension gained 26.47 of BLEU score, higher compared to the other two models on the same matrix dimensions.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3