Multipatch stochastic epidemic model for the dynamics of a tick-borne disease

Author:

Maliyoni Milliward,Gaff Holly D.,Govinder Keshlan S.,Chirove Faraimunashe

Abstract

Spatial heterogeneity and migration of hosts and ticks have an impact on the spread, extinction and persistence of tick-borne diseases. In this paper, we investigate the impact of between-patch migration of white-tailed deer and lone star ticks on the dynamics of a tick-borne disease with regard to disease extinction and persistence using a system of Itô stochastic differential equations model. It is shown that the disease-free equilibrium exists and is unique. The general formula for computing the basic reproduction number for all patches is derived. We show that for patches in isolation, the basic reproduction number is equal to the largest patch reproduction number and for connected patches it lies between the minimum and maximum of the patch reproduction numbers. Numerical simulations for a two-patch deterministic and stochastic differential equation models are performed to illustrate the dynamics of the disease for varying migration rates. Our results show that the probability of eliminating or minimizing the disease in both patches is high when there is no migration unlike when it is present. The results imply that the probability of disease extinction can be increased if deer and tick movement are controlled or even prohibited especially when there is an outbreak in one or both patches since movement can introduce a disease in an area that was initially disease-free. Thus, screening of infectives in protected areas such as deer farms, private game parks or reserves, etc. before they migrate to other areas can be one of the intervention strategies for controlling and preventing disease spread.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3