Comparative analysis of machine learning algorithms for predicting Dubai property prices

Author:

Elnaeem Balila Abdulsalam,Shabri Ani Bin

Abstract

IntroductionPredicting property prices is a crucial task in the real estate market, and machine learning algorithms offer valuable tools for accurate predictions. In this study, we introduce a comprehensive comparison of eight well-known machine learning algorithms, namely, ensemble empirical mode decomposition (EEMD)–stochastic (S) + deterministic (D)–support vector machine (EEMD-SD-SVM), support vector machine (SVM), gradient boosting, random forest, K-nearest neighbors (KNN), linear regression, artificial neural networks (ANN), and decision trees. The focus is on predicting property prices in Dubai, with the primary objective of assessing the predictive performance of these algorithms within this specific market context.MethodsThe evaluation is based on four key performance metrics: R-squared (R2), mean squared error (MSE), root mean squared error (RMSE), and mean absolute percentage error (MAPE). These metrics provide insights into prediction errors, accuracy in percentage terms, and the proportion of variance in property prices explained by independent variables. The study compares the strengths and limitations of each algorithm for predicting property prices in Dubai, highlighting scenarios where certain algorithms excel based on the nature of decision boundaries, handling complex data, capturing localized patterns, and offering interpretability.ResultsFindings from the comparative analysis shed light on the performance of each algorithm in predicting property prices in Dubai. EEMD-SD-SVM and SVM excel in scenarios requiring precise decision boundaries, while gradient boosting and random forests demonstrate robust performance with complex and noisy property price data. KNN captures localized patterns effectively, linear regression is suitable for straightforward regression tasks, ANN excels with extensive datasets, and decision trees offer interpretability in understanding factors influencing property prices.DiscussionThe study emphasizes the significance of model tuning, feature selection, and data pre-processing to enhance predictive power. Additionally, practical aspects such as computational efficiency, model interpretability, and scalability in real-world applications are discussed. The comparative analysis provides valuable guidance for stakeholders, including real estate professionals, data scientists, and stakeholders interested in selecting the most suitable machine learning algorithm for predicting property prices in Dubai, with a focus on the essential evaluation metrics of MSE, RMSE, MAPE, and R2. This study offers insights into the applicability and performance of different machine learning algorithms for predicting property prices in Dubai. Stakeholders such as real estate agents, buyers, sellers, or investors can leverage these insights to make informed decisions in the Dubai real estate market.

Publisher

Frontiers Media SA

Reference33 articles.

1. Support-vector networks;Cortes;Mach Learn,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3