Vaccination and variants: A COVID-19 multi-strain model evolution for the Philippines

Author:

Campos Harren J.,Raza Michelle N.,Arcede Jayrold P.,Martinez Joey Genevieve T.,Caga-anan Randy L.

Abstract

Coronavirus disease 2019 (COVID-19) management and response is a challenging task due to the uncertainty and complexity of the nature surrounding the virus. In particular, the emergence of new variants and the polarizing response from the populace complicate government efforts to control the pandemic. In this study, we developed a compartmental model that includes (1) a vaccinated compartment, (2) reinfection after a particular time, and (3) COVID-19 variants dominant in the Philippines. Furthermore, we incorporated stochastic terms to capture uncertainty brought about by the further evolution of the new variants and changing control measures via parametric perturbation. Results show the importance of booster shots that increase the vaccine-induced immunity duration. Without booster shots, simulations showed that the dominant strain would still cause significant infection until 31 December 2023. Moreover, our stochastic model output showed significant variability in this case, implying greater uncertainty with future predictions. All these adverse effects, fortunately, can be effectively countered by increasing the vaccine-induced immunity duration that can be done through booster shots.

Funder

Philippine Council for Health Research and Development

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Reference31 articles.

1. A novel coronavirus from patients with pneumonia in China, 2019;Zhu;N Engl J Med,2020

2. Tracking SARS-CoV-2 Variants2022

3. Reducing Vaccine Hesitancy in the Philippines: Findings from a Survey Experiment2021

4. Donors Making a Difference: Knocking Down Obstacles to COVID-19 Vaccination2022

5. Accounting for symptomatic and asymptomatic in a SEIR-type model of COVID-19;Arcede;Math Modell Nat Phenomena,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3