Assessing and Modelling Tail Dependencies Between Service Times in Discrete Event Simulation With Minimum Information Copulas for a Better Understanding of Maximum Time in System Risk

Author:

Werner Christoph

Abstract

In Discrete Event Simulation (DES) we can often assume that the distributions of service times are independent of each other. However, in some simulation problems this might lead to underestimating the potential risk of certain simulation results, such as the maximum time in system, exceeding some critical threshold, especially when tail dependencies are present. Given that the impact of potential tail dependencies on simulation results has only sparsely been addressed in the simulation literature, in this paper we present a novel framework to model tail dependencies between service time distributions in DES through copulas. A main modelling challenge for this is the lack of relevant historical data on tail dependencies. Therefore, we present a linear programming-based method to assess minimum information copulas through expert judgements which minimise unspecified parametric assumptions. It offers a structured way to include tail dependencies in DES via copula theory despite lacking historical data. Additionally, we provide a classification of the possible sources of tail dependencies in DES problems to better understand their impact on commonly used results in simulation studies, such as the maximum time in system. Lastly, we apply the assessment method and model tail dependencies in a simulation of an emergency ambulance service as here the maximum time in system is often critical.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Reference61 articles.

1. Simulation

2. Conceptual Modelling for Simulation Part I: Definition and Requirements;Robinson;J Oper Res Soc,2008

3. Modeling and Simulation Grand Challenges: An Or/ms Perspective;Taylor,2013

4. History of Input Modeling;Cheng,2017

5. Chapter 5 Multivariate Input Processes;Biller;Handbooks Operations Res Manag Sci,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3