Investigating Bayesian optimization for expensive-to-evaluate black box functions: Application in fluid dynamics

Author:

Diessner Mike,O'Connor Joseph,Wynn Andrew,Laizet Sylvain,Guan Yu,Wilson Kevin,Whalley Richard D.

Abstract

Bayesian optimization (BO) provides an effective method to optimize expensive-to-evaluate black box functions. It has been widely applied to problems in many fields, including notably in computer science, e.g., in machine learning to optimize hyperparameters of neural networks, and in engineering, e.g., in fluid dynamics to optimize control strategies that maximize drag reduction. This paper empirically studies and compares the performance and the robustness of common BO algorithms on a range of synthetic test functions to provide general guidance on the design of BO algorithms for specific problems. It investigates the choice of acquisition function, the effect of different numbers of training samples, the exact and Monte Carlo (MC) based calculation of acquisition functions, and both single-point and multi-point optimization. The test functions considered cover a wide selection of challenges and therefore serve as an ideal test bed to understand the performance of BO to specific challenges, and in general. To illustrate how these findings can be used to inform a Bayesian optimization setup tailored to a specific problem, two simulations in the area of computational fluid dynamics (CFD) are optimized, giving evidence that suitable solutions can be found in a small number of evaluations of the objective function for complex, real problems. The results of our investigation can similarly be applied to other areas, such as machine learning and physical experiments, where objective functions are expensive to evaluate and their mathematical expressions are unknown.

Funder

Engineering and Physical Sciences Research Council

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3