Algorithm unfolding for block-sparse and MMV problems with reduced training overhead

Author:

Hauffen Jan Christian,Jung Peter,Mücke Nicole

Abstract

In this study, we consider algorithm unfolding for the multiple measurement vector (MMV) problem in the case where only few training samples are available. Algorithm unfolding has been shown to empirically speed-up in a data-driven way the convergence of various classical iterative algorithms, but for supervised learning, it is important to achieve this with minimal training data. For this, we consider learned block iterative shrinkage thresholding algorithm (LBISTA) under different training strategies. To approach almost data-free optimization at minimal training overhead, the number of trainable parameters for algorithm unfolding has to be substantially reduced. We therefore explicitly propose a reduced-size network architecture based on the Kronecker structure imposed by the MMV observation model and present the corresponding theory in this context. To ensure proper generalization, we then extend the analytic weight approach by Liu and Chen to LBISTA and the MMV setting. Rigorous theoretical guarantees and convergence results are stated for this case. We show that the network weights can be computed by solving an explicit equation at the reduced MMV dimensions which also admits a closed-form solution. Toward more practical problems, we then considered convolutional observation models and show that the proposed architecture and the analytical weight computation can be further simplified and thus open new directions for convolutional neural networks. Finally, we evaluate the unfolded algorithms in numerical experiments and discuss connections to other sparse recovering algorithms.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Reference37 articles.

1. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information;Candès;IEEE Trans Inf Theory.,2006

2. Compressed sensing;Donoho;IEEE Trans Inf Theory,2006

3. Communication in the presence of noise;Shannon;Proc IRE,1949

4. Decoding by linear programming;Candes;IEEE Trans Inf Theory,2005

5. Geometric approach to error-correcting codes and reconstruction of signals;Rudelson;Int Mathem Res Notices,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3