Functional human skin explants as tools for assessing mast cell activation and inhibition

Author:

Villanueva Clarence Rachel,Barksdale Keane,Owolabi Tinuola,Bridges Donavan,Chichester Kristin,Saini Sarbjit,Oliver Eric T.

Abstract

Mast cells are activated through a variety of different receptors to release preformed granules and mediators synthesized de novo. However, the physiology and function of mast cells are not fully understood. Traditional studies of mast cell activation in humans have utilized cultures of tissue-derived mast cells including CD34+ progenitor cells or well-characterized commercially available cell lines. One limitation of these methods is that mast cells are no longer in a natural state. Therefore, their applicability to human skin disorders may be limited. Human skin explant models have been utilized to investigate the short-term effects of cell mediators, drugs, and irritants on skin while avoiding the ethical concerns surrounding in vivo stimulation studies with non-approved agents. Nonetheless, few studies have utilized intact human tissue to study mast cell degranulation. This “Methods” paper describes the development and application of an intact skin explant model to study human mast cell activation. In this manuscript, we share our protocol for setting up ex vivo human skin explants and describe the results of stimulation experiments and techniques to minimize trauma-induced histamine release. Skin explants were generated using de-identified, full-thickness, non-diseased skin specimens from plastic and reconstructive surgeries. Results were reproducible and demonstrated FcɛRI- and MRGPRX2-induced mediator release which was inhibited with the use of a BTK inhibitor and QWF, respectively. Thus, this explant model provides a quick and accessible method of assessing human skin mast cell activation and inhibition.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3